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Abstract

Transaction costs can make it unprofitable to rebalance all the way to the ideal

portfolio. A single-period mean-variance theory allows a full solution for many se-

curities with possibly correlated returns, and makes the economics of trading with

transaction costs very clear, informing us about theory and practice. As in continuous

time models, there is a non-trading region within which trading does not pay. With

only variable costs, any trading is to the boundary of the non-trading region, while

fixed or mixed costs induce trading to the interior. The exact solution for an arbitrary

number of assets and covariance structure is easy to compute (exactly by hand for a

small problem). The results nicely complement the continuous-time models for special

cases or with approximate numerical solutions. One application shows how to improve

on traditional symmetric futures overlay strategies.
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1 Introduction

Optimal portfolio rebalancing given transaction costs is a complex problem. Even with only

two assets, solving for the optimal strategy in a continuous-time model involves either a

primal free boundary problem (see, for example, Davis and Norman (1990), Dumas and

Luciano (1991), Liu and Loewenstein (2004), Shreve and Soner (1994) and Taksar et al.

(1988)) or its dual formulation (see Goodman and Ostrov (2010) and Schachermayer (2017)).

When there are more securities or time is discrete, models have been solved only in the

extreme case of uncorrelated returns and constant absolute risk aversion (Liu (2004)) or with

numerical or heuristic approximations (Leland (2000), Balduzzi and Lynch (1999), Balduzzi

and Lynch (2000), Donohue and Yip (2003), Han (2005), Muthuraman and Kumar (2006),

Irle and Prelle (2008), Lynch and Tan (2009), Myers (2009) or Buss and Dumas (2017)).

In this paper we study the single-period rebalancing problem in a mean-variance framework

that permits exact solutions, providing many interesting insights.

Mean-variance analysis was originated by Markowitz (1952), who described the basic for-

mulations and the quadratic programming tools used to solve them. The theory was further

described by Tobin (1958), who focused on macroeconomic implications of the theory. Early

discussions of transaction costs often focused on the intuition that small investors who face

high costs will choose a smaller and less diversified portfolio than will a large investor with

smaller costs. This intuition has been formalized by a constraint on the number of securities

in the portfolio (Jacob (1974)), a fixed cost for each security included in the portfolio (Bren-

nan (1975), Goldstein (1979), and Mayshar (1981) or a study of benefits of adding securities

without modeling the costs (Mao (1970)). Unfortunately, these assumptions tend to produce

a somewhat messy combinatoric problem looking at all possible subsets to include, and their

static perspective does not seem suited to questions about rebalancing. The current analysis

differs in two important ways from the traditional mean-variance literature on transaction

costs. First, we focus on rebalancing from a starting portfolio, not necessarily building a
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portfolio from scratch. Second, we solve models with variable costs as well fixed costs 1

A complete solution to a portfolio optimization problem is the rule for rebalancing from

initial portfolios to optimal new portfolios. Absent costs and other frictions such as taxes, the

optimal portolio after rebalancing depends on the initial portfolio only through the initial

wealth, since it does not cost anything to move among positions having the same value.

When trading involves transaction costs, we may not trade to this ideal portfolio that would

be optimal absent costs. In particular, there exists a set of initial positions which are too

close to the ideal portfolio to justify any trade, so that it is optimal not to trade at all.

Locally, the cost of moving to the ideal portfolio (constant and/or linear) is a larger order of

magnitude compared to the mean-variance loss from having the wrong allocation. The set

of portfolios from which it is not optimal to trade is referred to as the non-trading region.

The cost of trading can include a lot of pieces: brokerage fees, bid-ask spread, price

pressure (getting a less favorable price the more you trade), time and effort to compute and

submit the trade, and the cost of studying the securities in your portfolio. The overall cost of

trading is probably complex in practice, for example, the brokerage fee may be constant for

small trades with a positive marginal cost kicking in at some level. In this paper we abstract

from some of these complexities by modeling costs as either fixed, proportional or both. In

particular, we view the variable component of costs as proportional to the size of the trade

but possibly different for different securities, and we allow separate fixed components for

different subsets, allowing for an overall fixed cost, a per-security fixed cost, or a fixed cost

for entering a new exchange. These assumptions are general enough to be useful and simple

enough so we can get some sharp results.

In models with only proportional costs, any trading goes only as far as the boundary of the

non-trading region, since trading further would incur additional costs that are not justified.2

1Pogue (1970) formulated models with variable costs and other institutional features, but did provide any
analysis of their solution.

2Masters (2003) claims a mean-variance-style analysis with a single risky security and variable trading
costs in which it is claimed that it is not optimal to trade to the boundary of the non-trading region. However,
this is because the paper computed the non-trading region incorrectly as the set of portfolios from which it
would be worth trading to the ideal point that would be chosen absent costs. The error is that there are
initial portfolios for which it pays to trade to the boundary but not to the ideal portfolio.
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Furthermore, the cost of trading is additive (if all trades are in the same direction), or less

than additive (if the second trade reverses the first trade in some securities). If a candidate

trade does not take us to the non-trading region, we could add on the additional trade we

would make from that point and be better off. Conversely, if a candidate trade takes us on

a line going beyond the boundary of the nontrading region, is better to trade along the line

to the boundary because the part of the trade beyond the boundary is not justified. These

arguments do not work for fixed costs, because they rely on the cost of a sequence of trades

to be no more than additive.

In the models with fixed costs, any trade moves to inside the non-trading region if it is

optimal to trade at all: this is because fixed costs, once triggered, become sunk costs. With

only an overall fixed cost, any nonzero trade moves to an ideal portfolio that would be held

absent costs. This ideal portfolio is in the interior of the non-trading region because the

value of trading from nearby is too small to cover the fixed cost. With security-specific fixed

costs, any trade will take us to the interior of the non-trading region, and different starting

portfolios could cause us to trade to different target portfolios which depend on the subset

of securities being traded.

In models featuring both proportional costs and an overall fixed cost, if the starting

portfolio is far enough from the ideal portfolio, the optimal trade is exactly the same as the

optimal trade with variable costs only. This is because it is obvious it will be optimal to

trade something and incur the fixed cost, and therefore we can view the fixed cost as sunk.

The argument is slightly more complicated in the presence of asset (or subset) specific fixed

costs. Consider an example with independent returns and asset-specific fixed costs for each

of two assets. If we are are far away from the ideal position only in one security, the fixed

cost for this security can be considered as sunk but the same is not true for the other security.

This results in an optimal trade only involving the most displaced asset. However, in the

absence of asset-specific fixed costs it would have been optimal to trade in both assets.

The analysis in this article can accommodate multiple risky assets, trading of individual

securities or bundles or pairs, and trading futures or swaps as well as stocks. In particular,
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while applying our model to trading in futures and its underlying, we show how to improve

over traditional futures overlay strategies. Perhaps less surprisingly, it can also be shown

that inexpensive trading in bundles of assets is beneficial and the non-trading region gets

squeezed towards the ideal allocation along the bundles trading directions.

Given proportional costs only, our model is a quadratic program which is solved very

quickly by standard software. Adding fixed costs, we have the best solution of a finite set of

quadratic programs and the solution is still very fast if there are not too many different fixed

costs. The main requirements for the programs to be well-defined with unique solution are

(i) the covariance matrix of returns is positive definite, and (ii) the coefficient of risk aversion

plus the parameter penalizing tracking error is positive. In the traditional case, there is no

penalty for tracking error and the second condition is that the risk aversion parameter is

positive.

Although our model is myopic, Maurer, Pezzo, and Taylor (2018) show it is useful for

dynamic trading in FX markets: taking into account costs while optimizing over 29 developed

and emerging currencies from 1976 to 2016 leads to an economically large and statistically

significant improvement in the out-of-sample performance with a Sharpe ratio increment

of approximately 30%. They also show that half of the improvement is due to the proper

treatment of correlations.

Our analysis complements nicely Leland (2000) and Liu (2004). They have continuous-

time models with many assets and constant investment opportunity sets. Leland (2000)

provides an heuristic approach to minimize proportional transaction costs. He assumes the

non-trading region has the shape of a parallelogram or its higher dimensional analogs, and

our work suggests this to be a good approximation, since that is exactly the form of the

non-trading region in our model. Liu (2004) solves proportional and fixed transaction costs

problems in the presence of many uncorrelated risky assets. His no-trading regions are

rectangles (or higher dimensional analogs) which arise as special cases in our analysis when

the covariance matrix of the risky securities is diagonal. Our model helps to clarify the

connection between these two papers in the literature.
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The rest of this paper is structured as follows: Section 2 introduces the general framework,

Section 3 conveys the main economic insights through the graphical analysis of a set of

selected examples, and Section 4 provides a formal characterizations of the solutions and

their properties. Section 5 concludes.

2 The Mean-Variance Framework

There are N risky securities and a riskless asset (security 0). We assume trading goes through

the riskless asset. If we had a matrix of costs for trading each pair of assets, the notation

would be more cumbersome, but nothing essential would change. Preferences are given by

a linear mean-variance utility function over end-of-period wealth. Transaction costs can be

variable, fixed by security or subgroups, or fixed overall, or any combination of these different

types. We solve the following problem:

Problem 1 Given the vector θ0 of initial risky security positions, choose a nonnegative

vector ∆+ of security purchases and a nonnegative vector ∆− of security sales to maximize

the utility of terminal wealth

U(∆+,∆−) = θ′µ− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− c(∆+,∆−) (1)

subject to

θ = θ0 + ∆+ −∆− (2)

and

c(∆+,∆−) ≡ ∆′+C+ + ∆′−C− +
∑
S⊆S

K(S(∆+,∆−)) (3)

where we use the following notation:

θ: vector of risky security positions after trades have occurred

c: cost function

µ: vector of risky security expected excess returns net of any liquidation costs
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λ: risk aversion parameter (typically positive, but λ+ κ > 0 is sufficient for us)

κ: tracking error parameter (typically zero or positive, but λ+ κ > 0 is sufficient for us)

V: positive-definite covariance matrix of risky security returns net of any liquidation costs

θB: vector of benchmark risky security positions

C+ ≥ 0: vector of proportional transaction cost parameters for purchases

C− ≥ 0: vector of proportional transaction cost parameters for sales

S: set of all tradable risky securities

∅: the empty set {}

S(∆+,∆−) = {i|∆+,i > 0 or ∆−,i > 0} ⊆ S: subset of securities tradable paying a fixed cost

K(S) ≥ 0, K(∅) = 0, (∀S : S1 ⊇ S2 ⇒ K(S1) ≥ K(S2)): fixed cost for trading in subset S

The vector of risky security positions is θ, and the riskless-asset position is implicitly

given as a residual, so that the positions in θ do not have to add up to the initial wealth.

Utility is given as an excess over what we would get from investing only in the riskless asset

without costs. We are suppressing the prices of the securities, which can be thought of as

exogenous. In the case of assets such as stocks or bonds, we can think of θ as being the

number of dollars invested at the current price, and µ as the vector of expected rates of

return in excess of the riskfree rate. In the case of futures, we enter at a price of zero and

we can think of θ being measured in terms of the size of the position (either in number of

contracts or dollars worth of the underlying), with the excess return and volatility being

measured at that scale.

The first two terms in the utility function (1) are standard for mean-variance optimiza-

tion: θ′µ gives the net change in expected return from holding risky assets rather than just

the riskless asset, while λ
2
θ′Vθ is the utility penalty for taking on variance θ′Vθ. The con-

stant λ > 0 is the coefficient of risk aversion: the larger the value of λ, the more reluctant

we are to take on risk in exchange for return.3

The third term κ
2
(θ−θB)′V(θ−θB) is a penalty for tracking error, as in Grinold and Kahn

3Including 2 in the denominator makes the units the same as absolute risk aversion in a multivariate
normal model with exponential utility, and also cancels when we look at the first-order conditions.
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(1995). This term is perhaps controversial (and many academics would like to set κ = 0)

because it depends on the benchmark θB and not just on the distribution of returns. The

dependence on the benchmark would be unnecessary and damaging in an ideal world, but

does arise in practice for good reasons and should be very familiar to practitioners. When

plan sponsors allocate funds to different managers the penalty for tracking error gives the

managers an incentive not to deviate too much from the plan sponsor’s planned allocation

reflected in managers’ benchmarks. The plan sponsor may care about preserving the intended

allocation because it is diversifying or because it reflects the plan sponsor’s view of which

assets classes are likely to do well.

The last term is the cost function c(∆+,∆−), which specifies the future value of the

transaction costs paid to re-balance the initial position θ0 to the new position θ according

to equation (2). The vector C+ ≥ 0 (resp. C− ≥ 0) is the security-specific proportional cost

of buying (resp. selling) the security. Buying ∆+,n shares (resp. selling ∆−,n shares) incurs

a cost of ∆+,nC+,n (resp. ∆−,nC−,n). For each s ∈ S, K(S) ≥ 0 indicates the fixed cost

component we have to pay to be able to trade in the subset S = {i|∆+,i > 0 or ∆−,i > 0} of

risky securities. In the absence of trading no cost is incurred, so we set K(∅) = 0. Also, it

costs no less to trade more securities: (∀S1 ⊆ S2 ⊆ S)(K(S1) ≤ K(S2)). If K(S) is the same

positive constant for all nonempty sets S, the constant is an overall fixed cost. When the

fixed cost function K(·) has the form K(S) =
∑
n∈SK({n}), we have pure security-specific

fixed costs. As a third example, if S is partitioned into M different disjoint “markets”

S1, S2, ... SM with ∪Mm=1Sm = S, suppose we can write K(S) =
∑
m∈T K(Sm) where

T ≡ {m ∈ M |S ∩ Sm 6= ∅}. Then we can say that we have pure market-specific fixed costs.

If costs are proportional only, then (∀S)(K(S) = 0).

There are a number of ways of making the cost structure more complex but retaining

the basic structure that allows us to solve the model using quadratic programming. For

example, we could have a fixed cost for shorting any security or more generally the fixed cost

could depend both on the set of securities being sold and the securies being bought. One

particularly interesting generalization by Maurer, Pezzo, and Taylor (2018) has a separate
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variable cost for selling an existing long position than for establishing a new short position,

emphasizing that the cost may depend on more than the net trade.

Also outside the scope of our analysis are various other market frictions that would

maintain the quadratic programming format that keeps our model tractable. Instead, we

could add non-negativity constraints for portfolio positions, no-borrowing constraints, mar-

gin requirements, or constraints on proportions in individual stocks or industries, and the

problem would still be easy to solve, but including such considerations here would only be a

distraction from our main message.

3 Examples

In this section we illustrates and motivate the scope of our framework via a set of selected

examples.

3.1 Proportional Costs

Figure 1 shows a typical case with proportional costs. If the initial allocation θ0 is in the

non-trading region, labeled “NO TRADE”, then there is no trade whose benefit covers the

cost and it is best not to trade. The right boundary of the non-trading region is part of

the line along which we are just indifferent at the margin about selling security 1, and it

is optimal to sell security 1 if we start to the right of this boundary. The left boundary of

the non-trading region is part of the line along which we are just indifferent at the margin

about purchasing security 1, and it is optimal to purchase security 1 to the left of this

boundary. The boundaries for purchasing and selling are different because the costs put

a wedge between the marginal valuations with and without costs. Similar to the case of

security 1, we sell security 2 if we start above the top boundary and we sell security 2 if

we start below the bottom boundary. If we start in one of the four corner regions, then

we trade in both securities. Absent the positive correlations between the returns of the two
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securities, the non-trading region would have been a square (or a rectangle for non-identical

costs) with sides parallel to the axes. With positive correlation (or a positive weight on

benchmark deviations and positive correlations with the benchmark), the two securities are

substitutes, and over-weighting in one security is more serious if we have the over-weighting

in the other security. This is why the non-trading region is larger along the −45◦ direction

in which the over- and under-weightings cancel than along the 45◦ direction in which the

over- and under-weightings are reinforced.

3.1.1 Futures overlays

When security 1 represents equities and security 2 their futures contracts, it might be optimal

to deviate from (traditional) symmetric futures overlay strategies to take better advantage

of the extra expected return from holding the underlying.

Futures overlays are transaction-cost-aware strategies which use futures as an inexpensive

way of keeping effective asset allocations in line with a benchmark or ideal allocation. For

example, if we think the ideal weighting in equities is 60%, then as the market rises we become

over-weighted and as the market falls we become under-weighted (since the fixed-income

part of the portfolio moves less than proportionately with moves in the equity market).

Maintaining a weighting near the ideal one by trading equities is very expensive. A futures

overlay might correct for minor deviations by trading in futures, which are highly correlated

with equities but much cheaper to trade.4 This is why traditional strategies substitute futures

trades for trades in equities. However, the expected returns (“alphas”) of these trades are

not usually discussed much, but they turn out to be very important.

Figure 2 illustrates a case in which the investor gets similar expected returns on the un-

derlying and on “synthetic equity” composed of futures. In this case, the additional expected

return from holding equities is typically too small to justify the additional transaction costs.

Consequently, if we are over- or under-weighted in equities initially (with no futures), we

4Perhaps futures are used to keep the exposure to equities to within 3% of the ideal allocation with
trading in actual shares of stock only when the allocation gets more than 10% out of line.

9



correct our position by selling or buying futures. Thus, in the absence of some additional

return to holding the underlying equities, a traditional synthetic equity strategy would be

optimal, and there would seem to be little reason to hold the underlying equities in the first

place (point (0, 0) in Figure 2), or to trade them once we own them (the common initial

equity-only exposures represented by the portion of the dotted line in Figure 2 to the right

of −15%).

Generally, we might expect the return on the underlying equities to be higher than the

return on synthetic equity due to the benefits of active management. Figure 3 illustrates

an example in which equities have a significantly higher expected return than the synthetic

equity strategy using futures. In this case, there is a trade-off between transaction costs and

expected returns and it is optimal to use a futures overlay strategy of using futures to substi-

tute for some trading in the underlying. In practice, most plan sponsors use a “symmetric”

futures overlay that uses futures to the same extent for correcting over- and under-exposure

to the market: this would indeed be the typical optimal thing to do given the setup of Figure

2. However, the current example shown in Figure 3 prescribes an “asymmetric” strategy that

makes good economic sense. For the typical equities-only starting positions on the dotted

line, if the market exposure must be reduced, we sell futures, which allows us to keep the

extra return on the underlying equities. On the other hand, if the market exposure must be

increased, we buy equities, which have the extra return, rather than futures, which don’t.

An interesting point, heuristically analyzed in Brown and Scholtz (2007), is what happens

to futures overlay strategies when we consider rolling-over costs required to keep the systemic

exposure open. We address this considerations separately in a different paper.

3.2 Fixed Costs

3.2.1 Overall Fixed Costs

If there is an overall fixed cost, then if we trade the cost is the same whatever trade we make

(since it is no more costly to trade to the ideal portfolio than to trade to a less-preferred
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portfolio). Therefore, as Figure 4 illustrates, if we are going to trade, we always trade to

the same ideal portfolio (identified by the green square). Consequently, the choice problem

reduces to one of comparing the utility of not trading with the utility of trading to the

ideal point but incurring the fixed cost. It is optimal to trade when outside the indifference

curve (an ellipse given our mean-variance assumptions) and not trading in the light blue

area inside of it. If the asset returns were uncorrelated with symmetric covariances, the

non-trading region would be a circle. In this example, everything is symmetric but there

is correlation. The correlation means that the two assets are substitutes and it is not so

bad if we have too little of one asset if we have too much of the other. As in the case of

proportional costs, this is why we are quicker to trade if we are over-weighted in both assets

than if we are over-weighted in one and under-weighted in the other.

3.2.2 Asset-specific Fixed Costs

Figure 5 illustrates the various trading regions. Surrounding the ideal point in the middle

(identified by the green square), is the non-trading region. The upper left and lower right

boundaries are on the same ellipse, and the other boundaries are linear. From the regions

in the corners, we trade both securities to the ideal point. From the regions on the right

and left, we trade Security 1 but not Security 2 to a line going through the ideal point.

This would be a vertical line if we had no correlation, but has negative slope in our case.

Similarly, from the regions above and below, we trade only Security 2 to a different line

running through the ideal point. The left plot illustrates the trades in both securities, the

middle plot illustrates the trades in Security 1 alone, and the right illustrates the trades in

Security 2 alone. This example is consistent with Brennan (1975) or Goldstein (1979), in the

presence of constraints proportional to the number of securities traded, or implicitly Jacob

(1974), where we are given exogenously a small number of securities that can be bought.

This analysis is more general mostly in that it does not assume the starting position in cash

alone.
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3.3 Mixed Costs

Figure 6 shows the various optimal trades under an asset-specific fixed and proportional cost

structure. The non-trading region, labeled “NO TRADE”, resembles the one from Figure 5

when costs are only asset-specific fixed and analogous geometrical interpretations apply. The

upper left and lower right boundaries are on two different ellipses where we are indifferent

between simultaneously trading both securities or staying put, and the other boundaries are

straight indifference lines where we are indifferent between trading in one security at a time

or do nothing. Optimal trades for initial allocations outside of the non-trading region are

very similar to those described in Figure 1 when costs are only proportional and end up in

the interior of the non-trading region. This is because the impact of proportional over fixed

costs increases with the distance from the ideal point (identified by the green square), and

when a position is far enough proportional costs are just what matter. In particular, as the

leftmost plot illustrates, from the regions in the corners we trade both securities to the closest

corner of the interior non-trading region defined by the intersections of the dashed lines: the

region and the optimal allocations are the same as the one described in Figure 1. While, as

shown in the middle and right plot respectively, from regions to the left and right and above

and below the non-trading region we only trade in security 1 or 2. These trades bring us

to the closest dashed straight line inside the non-trading region, part of which representing

the border of the non-trading region in Figure 1. The reason why the lines stretch beyond is

because in these portions only the position of one security is far enough from the optimum

for the fixed cost to be considered sunk, resulting in extra trades involving the most displaced

asset.
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4 Analytical characterization of the solutions

4.1 Pure proportional costs

When k = 0 and K = 0, c(∆+,∆−) = ∆′+C+ + ∆′−C− so that the transaction cost for a

trade ∆+,n or ∆−,n is just proportional to the size of the trade. Then the problem to solve

specializes to

Problem 2 (Proportional Costs) Choose a nonnegative vector ∆+ of security purchases and

a nonnegative vector ∆− of security sales to maximize the utility of terminal wealth

UPC(∆+,∆−) = θ′µ− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)−∆′+C+ −∆′−C− (4)

subject to θ = θ0 + ∆+ −∆−

We next give sufficient conditions for existence and uniqueness of solutions in Problem

2.

Proposition 1 Given the maintained assumptions of a positive definite covariance matrix

V and λ + κ > 0, the optimal solution to Problem 2 exists and the optimal portfolio θ∗ we

trade to is unique. The optimal trade is of the form ∆+,n = max(θn − θn,0, 0) + xn and

∆−,n = −min(θn − θn,0, 0) + xn where xn ≥ 0. If the round-trip trading cost is positive,

C+,n + C−,n > 0, then it is suboptimal to simultaneously buy and sell so that xn = 0. In

particular, if the round-trip trading cost is positive for all securities, the optimal trades are

unique and Problem 2 has a unique solution.

Proof.

Let Û(θ) ≡ max{UPC(∆+,∆−)|∆+,n,∆−,n ≥ 0 and θ = θ0 + ∆+ − ∆−}. Define ∆̂+(θ)

and ∆̂−(θ) by ∆̂+(θ) = max(θn − θ0, 0) and ∆̂−(θ) = −min(θn − θ0, 0). Then Û(θ) =

UPC(∆̂+, ∆̂−), because any other way of generating θ either has the same value (if trading
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in at least some securities with round-trip cost of zero) or smaller value. Therefore

Û(θ) = θ′µ− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)− ∆̂+(θ)′C+ − ∆̂−(θ)′C− (5)

Note that −∆̂+(θ)′C+ and −∆̂−(θ)′C− are concave (since ∆̂+(θ)′C+ and ∆̂−(θ)′C− are con-

vex) and the quadratic terms are strictly concave. Therefore Û(θ) is strictly concave and if

an optimal θ exists it is unique. Such an optimum does exists because Û(θ) < Û(θ0) outside

of the set

θ′µ− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB) ≥ θ′0µ−

λ

2
θ′0Vθ0 −

κ

2
(θ0 − θB)′V(θ0 − θB)

which is the compact set bounded by a multidimensional ellipse because V is positive-definite

and κ+ λ > 0.

The final allocation θ can be achieved by any pairs (∆+,∆−) = (∆̂+ + x, ∆̂−+ x), where

xn ≥ 0. The utility function for these pairs is given by Û(θ) − C ′+x − C ′−x. If round-trip

trading costs are positive for all securities n, then x = 0 is the unique choice, so that the

optimal directional trades are unique.

The assumption that λ + κ > 0 is important: if λ + κ < 0 the investor is risk-loving

and will not have a solution, while if λ+ κ = 0 the agent is effectively risk-neutral and will

have a solution only in an uninteresting case. Since V is a covariance matrix it must be at

least positive semi-definite. If it is positive-semi-definite but not positive definite, we can

derive sufficient conditions for a solution but we need need some additional structure to rule

out arbitrage. This is similar to the condition for absence of arbitrage in the Fundamental

Theorem of Asset Pricing (Dybvig and Ross (1987)).

4.1.1 First Order Conditions

For the rest of the discussion of pure proportional costs, we assume the round-trip cost

C+,n + C−,n to be strictly positive for every security n. This makes the optimal trades ∆+
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and ∆− unique, but is without loss of generality in the sense that Proposition 1 tells us

exactly what happens otherwise.

Given θ0, it is easy and fast to solve Problem 2 numerically for the optimal trades (and

exactly by hand for small problems). However, we can learn a lot about the economics by

studying the First Order Conditions (FOCs). By Proposition 1, the solution of Problem 2

maximizes the concave non-differentiable function Û(θ), so the FOCs for an optimum imply5

0 ∈ ∇0Û(θ), where ∇Û(θ) is the subgradient given by {µ− r− λVθ− κV(θ− θB) + y|yn ∈

[−C−,n, C+,n](∀n)} and ∆+ = ∆̂+(θ) and ∆− = ∆̂−(θ).

We can also write the FOCs for θ for each generic security n as

(µ− r − λVθ − κV(θ − θB))n ≤ C+,n (6)

and

− (µ− r − λVθ − κV(θ − θB))n ≤ C−,n (7)

These two inequities say that the marginal benefit of buying or selling security n is less than

the marginal cost.

4.1.2 No-trading region

Define the No-Trading Region (NTR) to be the set of initial positions θ0 for which the

optimal choice is not to trade (θ = θ0).

Absent costs (C+ = C− = 0) Problem 2 features the standard mean-variance ideal

allocation θI (adjusted for the presence of the benchmark θB)

θI =
1

λ+ κ
V−1(κVθB + µ) (8)

and it is optimal to trade directly to this portfolio whatever the initial allocation θ0. As a

result, the NTR is the singletion {θ0}.
5See Rockafellar (1981).
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With transaction costs, however, there is a non-trivial set of portfolios θ0 too close to

θI to justify any trade. This set of portfolios satisfies (6) and (7) and is described by the

intersection of half-planes of the form

Vn,.θ0 ≥
1

κ+ λ
(κVn,.θB + (µn − r − C+,n)) (9)

Vn,.θ0 ≤
1

κ+ λ
(κVn,.θB + (µn − r + C−,n)) (10)

where Vn,. is the n-th row of V. These equations with equalities were used to plot the

boundaries of the NTRs in Figures 1, 2 and 3. More generally, solving for being on the edge

of multiple half-spaces allows us to compute the vertices and faces of the NTR.

In particular, each asset n is associated with two half-spaces (9) and (10), which are

parallel to each other and have orientation characterized by the vector Vn,.. These half-

spaces are separated by the distance C+,n+C−,n

||Vi||(κ+λ) which is proportional to the magnitude of

the costs, and are parallel to the coordinate axes if and only if V is a diagonal matrix. The

resulting object is a parallelogram for the case of 2 risky securities, or its higher dimensional

analog for a generic number N > 2

The FOCs in our setup fully characterizes the NTR. This suggest that Leland made a

good assumption when conjecturing the linearity of the NTR boundaries in the heuristic

solution of his continuous time model (Leland (2000)). Our analysis is also consistent with

the formal solution in continuous time with uncorrelated assets of Liu (2004): as in our

model specified to uncorrelated assets, the sides of his NTR are parallel to the coordinate

axes.

4.2 General Conditions for Fixed and Variable Costs

Proposition 2 Assume that the covariance matrix V is positive definite, that λ + κ > 0,

and that the fixed cost structure K(S) is nondecreasing (where nondecreasing is defined by

(∀S1, S2 ⊆ S)(S1 ⊇ S2 ⇒ K(S1) ≥ K(S2))). Then there always exists a solution to Problem
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1, and the optimal solution is the proportional-costs-only solution from Proposition 1 for

some subset S ⊆ S of securities.

Proof. Whenever the fixed cost function K(S(∆+,∆−)) is not zero everywhere, Problem

1 can be viewed as a combinatoric problem of computing the optimum given the subset

S ⊆ S of assets traded and then picking the subset with the best optimal value. Given N

assets there are finitely many (2N) different subsets and the solution to our problem takes

the maximum over finitely many values. Each problem can be indexed by a different subset

S ⊆ S: for a given subset S we pay the fixed cost K(S) which allows us to trade in all the

securities inside of it and solve the following optimization

Problem 3 (Subset S Problem)

Take as given some subset S ⊆ S of the securities, choose a nonnegative vector ∆+ of

security purchases and a nonnegative vector ∆− of security sales to maximize the utility of

terminal wealth

US(∆+,∆−) = θ′µ− λ

2
θ′Vθ − κ

2
(θ − θB)′V(θ − θB)−∆′+C+ −∆′−C− −K(S) (11)

subject to θ = θ0 + ∆+ −∆− and (∀i ∈ S \ S)(∆i,+ = ∆i,− = 0).

Note that we charge a cost of K(S) even though the optimal solution may not trade

all securities in S: this avoids a closure problem, as we explain below, and is without loss

of generality given our assumption that the cost K(·) is nondecreasing. In particular, the

problem is equivalent to a proportional-cost-only optimization since the fixed cost K(S) is a

sunk cost and we know from Proposition 1 to admit a unique solution. Let this solution be

denoted as (∆S
+,∆

S
−). If it is optimal to trade in all the securities belonging to subset S, the

maximum level of utility our investor can achieve is given by US(∆S
+,∆

S
−). If it is optimal to

trade in a strict subset T of S, then (∆S
+,∆

S
−) is also the solution to the Subset T Problem.

This is because the objective function is the same up the addition of a constant and the

solution to the less constrained Subst S Problem is still feasible for the more constrained
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Subset T Problem. Furthermore it must be that UT (∆T
+,∆

T
−) = UT (∆S

+,∆
S
−) ≥ US(∆S

+,∆
S
−).

This is due to K(·) being nondecreasing and T ⊂ S. Therefore, when it is optimal to trade in

a subset T of S the maximum level of utility our investor can achieve is given by UT (∆S
+,∆

S
−)

not necessarily US(∆S
+,∆

S
−).

A solution to Problem 1 is a solution for some Subset S∗ Problem where S∗ belongs to

argmaxS⊆S
¶
US(∆S

+,∆
S
−)
©
. From the previous discussion only two cases are possible: if for

every S ⊆ S the solution to Subset S Problem entails trading in all the securities in the

subset, then (∆S∗
+ ,∆

S∗
− ) is the solution to Problem 1 and US∗

(∆S∗
+ ,∆

S∗
− ) is the optimal utility

level. If the solution to Subset S Problem entails trading in a strict subset T of securities, we

know that (∆S∗
+ ,∆

S∗
− ) = (∆T

+,∆
T
−) and UT (∆T

+,∆
T
−) = UT (∆S∗

+ ,∆
S∗
− ) ≥ US∗

(∆S∗
+ ,∆

S∗
− ). Fur-

thermore, because S∗ belongs to argmaxS⊆S
¶
US(∆S

+,∆
S
−)
©
, it follows that UT (∆T

+,∆
T
−) ≤

US∗
(∆S∗

+ ,∆
S∗
− ).

The assumptions of a positive definite covariance matrix V and a positive coefficient of

risk aversion λ guarantee existence and uniqueness of solutions in the presence of proportional

costs. When costs are required only to (or additionally allowed to) be fixed, we also need

K(·) to be nondecreasing. This restriction is mild since it naturally assume investors pay

identical or higher costs for trading in bigger subsets of securities. Nonetheless, not imposing

it might lead to cases where a solution does not exist.6

5 Conclusion

We have studied transaction costs in a single-period mean-variance setting. This setting

allows a full solution for many securities with possibly correlated returns, and makes the

economics very clear. As in more complex models in the literature, there is a nontrading

6For example if we only have one risky security and not trading (the null subset) has a higher cost than
trading (a set of cardinality 1), in the case in which not trading is the ideal optimum there is no solution.
This is because if we pay the lower cost and then trade we might be better off than deciding ex-ante not to
trade and pay the higher cost.
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region in which the benefits of trading (of second order) do not justify the costs of trading (of

zero or first order) towards the ideal point. If there are proportional costs only, any trading

goes only to the boundary of the nontrading region, because any additional marginal trade

is not justified. On the other hand, if there are only overall fixed costs, we always trade to

the same point in the interior of the nontrading region, since once we have decided to trade,

the trading cost is sunk and we will always go to the ideal point. More generally, with both

fixed and variable costs, we typically trade to a different point inside the nontrading region

depending on the portfolio we start from.

The analysis provides new insights into practical problems such as the use of futures

overlays. Futures overlays do some portfolio rebalancing in futures instead of the underlying

stocks as a way of reducing transaction costs. Our analysis shows that the optimal strategy

should typically be asymmetric, buying stocks to increase exposure and shorting futures to

reduce exposure. This is in contrast to traditional symmetric overlay strategies.

A variant of our analysis has been used by Maurer, Pezzo, and Taylor (2018) to look

at transaction-cost smart futures strategies. The strategy improves a lot on the optimal

strategy ignoring costs and more interestingly the optimal strategy ignoring correlations

among futures. This shows that our extension to multiple assets that are not correlated is

important economically.

One possible use of this analysis is in examining whether asset pricing “anomalies” can

be used to generate trading costs. In a world with trading costs, anomalies can exist even

if all agents are optimizing and rational, provided the profitability of trading does not cover

the costs. With this analysis, we can shine a fresh light on whether trading on anomalies

is profitable. Possibly the smarter trading in the face of transaction costs will reveal that

trading on anomalies is more profitable than previously thought, or perhaps we will find out

that trading on anomalies gets unprofitable exactly when naive analysis (say using a linear

forecasting models) suggests that profits are the largest.

The analysis has already provided insights into continuous-time problems that are hard

to solve exactly. For example, the high-dimensional parallelogram shape of the nontrading
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region assumed in the heuristic analysis by Leland (2000) is exactly correct in our model,

lending support to this assumption. We hope that insights from our analysis will help

scholars to push the continuous model further.
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Mean-variance problem with proportional costs

Figure 1: The figure illustrates the optimal strategy for a mean-variance investor with risk
aversion of λ = 2 in the case of two positively correlated identical risky securities (ρ = 0.5),
with risk premia of 6% (µ1 = µ2 = 0.06), volatilities of 24% (V(1, 1) = V(2, 2) = 0.242) and
symmetric buy and sell proportional costs of 0.5% = 50 basis points (C+,1 = C−,1 = C+,2 =
C−,2 = 0.005). With proportional costs, the non-trading region is the area of a parallelogram.
Outside the non-trading region, it is optimal to trade (along the arrows) to the boundary of
the non-trading region. If returns were uncorrelated, then the non-trading region would be
a square with sides parallel to the axes. In this example, because returns are correlated and
the two securities are substitutes, over-weighting in one security is less likely to result in a
trade if we are under-weighted in the other security.

.
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Traditional futures overlay with proportional costs

Figure 2: This example considers holdings of equities (E) and futures (F) that are highly
correlated (ρ = 0.95) in a case in which the equity-equivalent risk premia and volatilities
are nearly the same (µE = 3.4%, σE = 21% and µE = 3%, σE = 20%), and the mean-
variance investor has risk aversion of λ = 1. In this case, the cheaper trading costs of futures
(C+,F = C−,F = 0.1% versus C+,E = C−,E = 0.6%) are decisive. Starting from the normal
range of equities-only positions (the dotted line) the majority of times it is optimal to pursue
traditional futures overlay strategies where under or over market exposures are corrected via
trading in futures as highlighted in bold. In particular, starting from all cash (highlighted
in green), the optimal trade is a “synthetic” strategy consisting in buying futures only.

.
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Asymmetric futures overlay with proportional costs

Figure 3: This second example with futures has a significantly higher risk premium (“alpha”)
on actual equities (E, µE = 4%) than on synthetic equities composed of futures (F, µF = 3%)
on top of a stark difference in proportional costs (C+,E = C−,E = 0.52% versus C+,F =
C−,F = 0.25%). Furthermore the futures and equities are highly correlated (ρ = 0.95), with
similar volatilities (σE = 21% and σE = 20%). The optimal strategy for a mean-variance
investor with risk aversion of λ = 1 is an “asymmetric” futures overlay strategy typically
selling futures to correct for overexposure to market risk but buying underlying equities
to correct for underexposure to market risk. This asymmetry is due to the fact that selling
futures allows the investor to keep the alpha on the exposure she is eliminating, while buying
equities allows her to gain alpha on the exposure she is taking on.

.
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Mean-variance problem with overall fixed costs

Figure 4: The figure illustrates the optimal strategy for trades in two positively correlated
identical risky securities (ρ = 0.5), with risk premia of 6% (µ1 = µ2 = 0.06), volatilities of
24% (V(1, 1) = V(2, 2) = 0.242) and an overall fixed cost of k = 0.075%. With an overall
fixed cost, either there is trade immediately to the ideal point (indicated by a green square)
or it is not worth trading at all. The non-trading region (shaded light blue) is an ellipse.
As with proportional costs, correlation between the assets implies that it is more damaging
(and more likely to do trade) when both asset positions are out of line in the same direction.

.
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