Problem Set 4 Answers: Eigenvalues, eigenvectors, and regime-switching models
P. Dybvig

1. Consider the matrix

$$
D=\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right)
$$

A. Compute the eigenvalues λ_{1} and λ_{2} of A.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right) \\
& =-\lambda(3-\lambda)-2(-1) \\
& =2-3 \lambda+\lambda^{2} \\
& =(\lambda-2)(\lambda-1)
\end{aligned}
$$

Therefore, the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=1$. (The ordering is arbitrary, so saying $\lambda_{1}=1$ and $\lambda_{2}=2$ would also be correct.)
B. Compute corresponding eigenvectors.
for $\lambda_{1}=2$, we have $\left(D-\lambda_{1} I\right) x=0$ or

$$
\left(\begin{array}{cc}
0-2 & 2 \\
-1 & 3-2
\end{array}\right) x=0
$$

The first row tells us that $-2 x_{1}+2 x_{2}=0$ or $x_{1}=x_{2}$ (and the second row tells us the same). Arbitrarily setting $x_{2}=1$ (which corresponds to choice of scaling), we have that the first eigenvector can be taken to be

$$
x^{1}=\binom{1}{1}
$$

We can confirm this by checking the eigenvalue equation $D x=\lambda x$:

$$
\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right)\binom{1}{1}=\binom{0 \times 1+2 \times 1}{-1 \times 1+3 \times 1}=\binom{2}{2}=2\binom{1}{1} .
$$

For the second eigenvalue $\lambda_{2}=1$, we have $\left(D-\lambda_{2} I\right) x=0$ or

$$
\left(\begin{array}{cc}
0-1 & 2 \\
-1 & 3-1
\end{array}\right) x=0
$$

The first row tells us that $-x_{1}+2 x_{2}=0$ or $x_{1}=2 x_{2}$ (and the second row tells us the same). Arbitrarily setting $x_{2}=1$ (which corresponds to choice of scaling), we have that the second eigenvector can be taken to be

$$
x^{1}=\binom{2}{1} .
$$

We can confirm this by checking the eigenvalue equation $D x=\lambda x$:

$$
\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right)\binom{2}{1}=\binom{0 \times 2+2 \times 1}{-1 \times 2+3 \times 1}=\binom{2}{1}=1\binom{2}{1} .
$$

C. Let $x_{0}=(3,2)^{T}$. Write x_{0} as a linear combination of the eigenvectors.

Let $x_{0}=c_{1} x^{1}+c_{2} x^{2}$. Equating the transpose of each side we have $c_{1}(1,1)+$ $c_{2}(2,1)=(3,2)$, or

$$
\begin{aligned}
c_{1}+2 c_{2} & =3 \\
c_{1}+c_{2} & =2
\end{aligned}
$$

Taking the difference of the two equations, we have that $c_{2}=1$ and therefore from either equation we have $c_{1}=1$. So, $x_{0}=x^{1}+x^{2}$.
D. Use the eigenvalues and eigenvectors to compute $A^{5} x_{0}$.

$$
A^{5} x_{0}=A^{5}\left(x^{1}+x^{2}\right)=A^{5} x^{1}+A^{5} x^{2}=\lambda_{1}{ }^{5} x^{1}+\lambda_{2}{ }^{5} x^{2}=32 x^{1}+x^{2}=\binom{34}{33} .
$$

3. Consider a model with three economic scenarios: (1) healthy economy, (2) recession, and (3) depression. These states are assumed to follow a Markov
switching model in continuous time. From a healthy economy, the economy has a probability per unit time of .05 of moving to a recession but cannot move directly to a depression. From a recession, the economy has a probability per unit time of .03 of moving to a healthy economy and a probability per unit time of .02 of moving to a depression. From a depression, the economy has a probability per unit time of .05 of moving to a recession but cannot move directly to a healthy economy.
A. Let $\pi(t)=\left(\pi_{1}(t), \pi_{2}(t), \pi_{3}(t)\right)^{T}$ be the vector of the probabilities of the three states at a future time t given the information now. Write down a first-order vector ODE satisfied by $\pi(t)$.

$$
\pi^{\prime}(t)=A \pi(t)
$$

where

$$
A=\left(\begin{array}{ccc}
-0.05 & 0.03 & 0 \\
0.05 & -0.05 & 0.05 \\
0 & 0.02 & -0.05
\end{array}\right)
$$

B. Find the general solution of the vector ODE given in part A.

First, find the eigenvalues (computing the determinant by expanding around the first column):

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I)= & \operatorname{det}\left(\begin{array}{ccc}
-0.05-\lambda & 0.03 & 0 \\
0.05 & -0.05-\lambda & 0.05 \\
0 & 0.02 & -0.05-\lambda
\end{array}\right) \\
= & (-0.05-\lambda)\left((-0.05-\lambda)^{2}-0.05 \times 0.02\right) \\
& -0.05(0.03)(-0.05-\lambda) \\
= & (-0.05-\lambda)\left(\lambda^{2}+.1 \lambda+.0025-.0010-.0015\right) \\
= & -(\lambda+0.05) \lambda(\lambda+.1)
\end{aligned}
$$

Eigenvalues are $\lambda=0,-0.05$, and -0.10 . For the associated eigenvectors, we find for each λ a solution of $(A-\lambda I) q=0$. For $\lambda=0$, we have

$$
\left(\begin{array}{ccc}
-0.05 & 0.03 & 0 \\
0.05 & -0.05 & 0.05 \\
0 & 0.02 & -0.05
\end{array}\right) q=0
$$

Starting with $q_{3}=1$, the last equation (last row) implies $q_{2}=5 / 2$ and the first equation implies $q_{1}=3 / 2$. So, $(3 / 2,5 / 2,1)$ is an eigenvector corresponding to the eigen value $\lambda=0$.

For $\lambda=-0.05$, we have

$$
\left(\begin{array}{ccc}
0 & 0.03 & 0 \\
0.05 & 0 & 0.05 \\
0 & 0.02 & 0
\end{array}\right) q=0
$$

Starting with $q_{3}=1$, the middle equation implies $q_{1}=-1$ and the first and third equations together imply $q_{2}=0$. So, $(-1,0,1)$ is an eigenvector corresponding to the eigen value $\lambda=-0.05$.

For $\lambda=-0.10$, we have

$$
\left(\begin{array}{ccc}
0.05 & 0.03 & 0 \\
0.05 & 0.05 & 0.05 \\
0 & 0.02 & 0.05
\end{array}\right) q=0
$$

Starting with $q_{3}=1$, the last equation (last row) implies $q_{2}=-5 / 2$ and the first equation implies $q_{1}=3 / 2$. So, $(3 / 2,-5 / 2,1)$ is an eigenvector corresponding to the eigen value $\lambda=-0.10$.

Since all the eigenvalues are distinct, the homogeneous solution is

$$
\pi(t)=K_{1}\left(\begin{array}{c}
3 / 2 \\
5 / 2 \\
1
\end{array}\right)+K_{2} e^{-.05 t}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+K_{3} e^{-.1 t}\left(\begin{array}{c}
3 / 2 \\
-5 / 2 \\
1
\end{array}\right) .
$$

Since our differential equation is homogeneous, this is also the general solution.
C. Find the solution of the ODE that satisfies the initial condition that we are in a recession at time $t=0$.

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=K_{1}\left(\begin{array}{c}
3 / 2 \\
5 / 2 \\
1
\end{array}\right)+K_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+K_{3}\left(\begin{array}{c}
3 / 2 \\
-5 / 2 \\
1
\end{array}\right) .
$$

From the first and third equations, we can see that $K_{2}=0$. Then from the first or the third equation we can see that $K_{1}=-K_{3}$. Plugging this into the
second equation we can see that $K_{1}=1 / 5$ and $K_{3}=-1 / 5$. So we have the solution

$$
\pi(t)=\left(\begin{array}{l}
0.3 \\
0.5 \\
0.2
\end{array}\right)+e^{-0.1 t}\left(\begin{array}{c}
-0.3 \\
0.5 \\
-0.2
\end{array}\right)
$$

D. We have a possible investment project that requires an initial investment of $\$ 100,000$. The project pays a cash flow c_{t} of $\$ 7,000 /$ year when the economy is healthy, $\$ 1,000 /$ year in a recession, and $\$ 0 /$ year in a depression. If the interest rate is 2%, is the net present value

$$
\int_{t=0}^{\infty} e^{-r t} E\left[c_{t}\right] d t-100,000
$$

of the cash flows positive?

$$
\begin{aligned}
P V & =\int_{t=0}^{\infty} e^{-r t} E\left[c_{t}\right] d t \\
& =\int_{t=0}^{\infty} e^{-r t}(7000,1000,0) \pi(t) d t \\
& =1000 \int_{t=0}^{\infty} e^{-.02 t}\left(7 \times .3\left(1-e^{-.1 t}\right)+1 \times .5\left(1+e^{-.1 t}\right)+0 \times .2\left(1-e^{-.1 t}\right)\right) d t \\
& =1000 \int_{t=0}^{\infty}\left(2.6 e^{-.02 t}-1.6 e^{-.12 t}\right) d t \\
& =1000\left(\frac{2.6}{.02}-\frac{1.6}{.12}\right) \\
& =116,666.67
\end{aligned}
$$

So yes, the NPV $(=\$ 116,666.67-100,000=16,666.67)$ is positive.

