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5. Bonus problem (30 bonus points)

Consider the Markov switching model in problem 3 and in particular the
project described in part 3F. Suppose that instead of starting the project
immediately, we can pay $3, 000 per unit time to keep the project alive with-
out undertaking it. To get any credit for this problem, you must show your
work, and there is no use just guessing.

A. What is the optimal strategy? You can restrict your analysis to the only
sensible strategies (a) abandon the project, (b) invest immediately, and (c)
spend 3, 000 per unit time to keep the project alive until we arrive in state
1, and at that time invest in the project.

Alternative (a) has NPV= 0 so it is dominated by alternative (b) which has
NPV= 10, 000 (from the calculation in part 3E). If instead we delay but keep
the project alive so long as we are in state 2, during that time we pay 3, 000
per unit time but we can also collect 100, 000×5% = $5, 000 per unit time in
interest on the $100, 000 that hasn’t been invested yet, for a net cash flow of
1, 000 per unit time, which is larger than the 1, 000 per unit time we would
have gotten if we invested at time zero. Therefore, it pays to wait but pay
to keep the investment alive.

B. What is the NPV of the optimal strategy?

Since the net increase in cash flow is $1, 000 per unit time, the increase in
value over investing immediately is the expected present value of receiving
$1, 000 per unit time until the first time we enter state 1. Let P (t) be the
probability we haven’t entered state 1 at or before time t. Then P ′(t) =
−.15P (t) and P (0) = 1, so that P (t) = exp(−.15t). Therefore, the increase
of expected NPV compared to investing immediately is

∫

∞

t=0

1000e−.05te−.15tdt =
1000

.20



= $5, 000

So, the NPV from keeping the project alive until state 1 is $10, 000+5, 000 =
$15, 000.

A second solution

I like the economic argument above because it is easy to understand and
economizes on calculations. To confirm the answer, I checked my solution
using a alternative mathematical argument. First, we can derive as the
expected NPV, priced at time τ , of starting the project at time τ . This
value does not depend on τ since this is a Markov model that looks the same
going forward at every time so long as the state variables are the same, and
at time τ we are always in state 1 no matter what the realized value of τ
is. This is the same as the calculation in problem 3 except that we have the
initial condition π(0) = (1, 0)T instead of π(0) = (0, 1)T . As before, define
c = (10, 1)T to be the vector of costs across states, in thousands. Then we
have

E[PV ] =
∫

∞

t=0

(

cT
([

.6

.4

]

+

[

.4
−.4

]

e−.25t

))

e−.05tdt

=
6.4

.05
+

3.6

.30
= 128 + 12 = 140.

so the NPV in thousands looking forward at time τ is 140 − 100 = 40. So,
conditional on τ , the NPV in thousands priced at time 0 is

40e−.05τ
−

∫

τ

t=0

3e−.05tdt = 40e−.05τ
−

3

.05
(1− e−.05τ )

= 100e−.05τ
− 60.

Since we do not know τ , we have to take an expectation over its possible
realizations. The cumulative distribution function F (t) for the first time τ

we enter state 1 is by definition the probability that τ ≤ t, which is one
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minus the probability that τ > t, which is P (t). So, F (τ) = 1 − P (τ) =
1 − exp(−.15τ) and therefore the probability density is f(τ) = F ′(τ) =
.15 exp(−.15τ). Therefore, the expected NPV for the waiting strategy is

∫

∞

τ=0

(100e−.05τ
− 60).15e−.15τdτ =

.15 ∗ 100

.2
−

.15 ∗ 60

.15
= 75− 60

= 15,

which is $15, 000, the same as above. Therefore, paying to wait until state 1
arrives is optimal because it has a higher present value than both investing
immediately (NPV= $10, 000) and abandoning the project (NPV= $0).

A third solution

Without providing many details, I would like to note a third approach for
evaluating the value of paying to keep the project alive until state 1 arrives
when we invest. For this, we want to distinguish whether 1 has or has
not ever occured, and we will consider the probability vector p(t) satisfying
p′(t) = Bp(t) where

p(t) =







−.1 .15 .15
0 −.15 0
.1 0 −.15







and the states in order are “state 1,” “state 2 and never before in state 1,”
and “state 2 and previously visited state 1. Doing the usual analysis using
eigenvalues and eigenvectors of B and imposing the initial condition that
p(0) = (0, 1, 0)T , we have that

p(t) =







.6
0
.4





+ e−.15t







0
1
−1





+ e−.25t







−.6
0
.6





 .

Using the state-dependent cash flow in thousands C = (10,−3, 1)T (note this
cash flow is not a difference like the cash flow of $1, 000 in the first solution
and therefore also does not include interest on the deferred investment), we
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can write the NPV as

NPV =
∫

∞

t=0

(−100p2
′(t) + CTp(t))e−rtdt

=
∫

∞

t=0





−100× .15e−.15t + CT













.6
0
.4





+ e−.15t







0
1
−1







+e−.25t







−.6
0
.6

















 e−.05tdt

=
−15

.2
+

6.4

.05
+

−4

.2
+

−5.4

.3
= −75 + 128− 20− 18

= 15.

Note that this analysis using B can also be used to solve problem 3, using
the cost vector c = (6, 1, 1)T , so with this approach is not necessary to do
two different eigenvalue analyses for problems 3 and 5.
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