
FIN 550J Exam Answers, October 21, 2010

Phil Dybvig

1. PROBABILITIES Let the stock price S take on values uniformly dis-
tributed on [40, 60]. A digital option on the stock has payoff

D =

{

1 for S > 55
0 otherwise

(1)

a. What is the density (pdf) of the stock price S?

f(S) =











0 for S < 40
1

60−40
= 1

20
for 40 < S < 60

0 for 60 < S

b. What is the distribution function (cdf) of the stock price S?

F (S) =
∫

S

s=0

f(s)ds

=











0 for S < 40
S−40

20
for 40 ≤ S < 60

1 for 60 ≤ S

c. What is the distribution function (cdf) of the payoff D of the digital
option?

G(D) = prob(D̃ ≤ D)

=











0 for D < 0
prob(S ≤ 55) = 3

4
for 0 ≤ D < 1

1 for 1 ≤ D

d. Compute the mean, variance, and standard deviation of the digital option
payoff.



D = 0 with probability 3/4 and 1 with probability 1/4. Therefore D has
mean

E[D] =
3

4
0 +

1

4
1 =

1

4
,

variance

var[D] = E[D2]− (E[D])2 =
3

4
0 +

1

4
1−

(

1

4

)2

=
3

16

2. Linear equations (24 points) Consider the system of equations:

x1 = 17− 2x2 − 3x3

x2 = 8− 2x1 − x3

x3 − 5 = x1 − x2

a. Write these equations in the form Ax = b. What are A and b?

Bringing all the expressions in x to the left-hand side and the constant terms
to the right-hand side, we have

x1 + 2x2 + 3x3 = 17

2x1 + x2 + x3 = 8

−x1 + x2 + x3 = 5

(This is not unique; you might have one or more of the equations multi-
plied by −1 on both sides, with the same changes to A and b below carried
through.) Now, we can write this equation in matrix form as







1 2 3
2 1 1
−1 1 1













x1

x2

x3





 =







17
8
5





 .

So, we can take

A =







1 2 3
2 1 1
−1 1 1






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and

b =







17
8
5





 .

b. Solve for x using Gaussian elimination.

We could do this by inverting A and then computing x = A−1b, but it is less
work to use b in the tableau instead. So, first set up the tableau

(A|b) =







1 2 3 17
2 1 1 8
−1 1 1 5





 .

Subract twice the first row from the second row and add the first row to the
third row to create zeros below the diagonal in the first column:







1 2 3 17
0 −3 −5 −26
0 3 4 22





 .

Add the second row to the third row to create another zero below the diag-
onal:







1 2 3 17
0 −3 −5 −26
0 0 −1 −4





 .

Add three times the third row to the first row and subtract five times the
third row from the second row to create zeros above the diagonal in the third
column:







1 2 0 5
0 −3 0 −6
0 0 −1 −4





 .

Add 2/3 the second row to the first row to create another zero above the
diagonal:







1 0 0 1
0 −3 0 −6
0 0 −1 −4





 .
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Multiply the second row by −1/3 and the third row by −1 to convert the
diagonal matrix to the identity:







1 0 0 1
0 1 0 2
0 0 1 4





 .

The solution is on the right;

x =







1
2
4





 .

3. OPTIMIZATION (26 points) Solve the following maximization problem:

Choose x1 and x2 to
maximize 10x1 + 5x2 − x2

1
− x1x2 − x2

2

subject to x2 ≤ 5

Note: the second-order conditions are satisfied because the Hessian of theob-
jective function is negative definite and the constraint set is convex. You do
not need to prove this.

First try the unconstrained maximization. Now,

∇f(x) = (10− 2x1 − x2, 5− 2x2 − x1).

Solving for ∇f(x) = 0, we can write this as:

10− 2x1 − x2 = 0

5− x1 − 2x2 = 0

Subtracting twice the second equation from the first, we have 3x2 = 0 so that
x2 = 0 and either equation then implies x1 = 5. Since this unconstrained
solution satisfies the constraint, it is also the constrained solution. So the
solution is x = (5, 0)T , and we are done.
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If we tried the constrained maximization first, we would g(x) = x2 and
∇g(x) = (0, 1). The general Kuhn-Tucker conditions are

10− 2x1 − x2 = 0

5− x1 − 2x2 − λ = 0

λ(x2 − 5) = 0

λ ≥ 0

x2 ≤ 5

and if the constraint is binding in the solution then x2 = 5 and we can solve
for x1 = 5/2 and λ = −15/2 but this contradicts λ ≥ 0 so we can infer that
there is no solution with the constraint binding. At this point, we would turn
to the unconstrained problem.

4. EIGENVALUES AND EIGENVECTORS (30 points) Let

C =

(

.5 .4

.5 .6

)

A. Compute the eigenvalues of C.

The eigenvalues are the solutions of the characteristic equation det(A−λI) =
0. Since

A− λI =

(

.5− λ .4
.5 .6− λ

)

,

the characteristic equation is (.5−λ)(.6−λ)−.4×.5 = 0, or λ2−1.1λ+.1 = 0.
Factoring, we have (λ− .1)(λ− 1) = 0 or λ = .1 or 1.

Alternatively, factoring might be easier if we multiply by 10 first to get rid
of the fractions: 10λ2− 11λ+1 = 0 or (10λ− 1)(λ− 1) = 0 and again λ = .1
or 1.

B. Compute the corresponding eigenvectors of C.

To compute an eigenvector, for each λ we find a solution of the equation

(A− λI)x = 0.
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For λ = .1, we have
(

.4 .4

.5 .5

)

.

The solution is only defined up to a multiple, so we try taking x2 = 1 and
we have x1 = −1 so a corresponding eigenvector is x = (−1, 1)T .

For λ = 1, we have
(

−.5 .4
.5 −.4

)

.

The solution is only defined up to a multiple, so we try taking x2 = 1 and
we find that x1 = .8 so a corresponding eigenvector is x = (.8, 1)T .

C. Compute C5(0, 1)T .

Now we can write

C5

(

α

(

−1
1

)

+ β

(

.8
1

))

= .15α

(

−1
1

)

+ 15β

(

.8
1

)

.

So, we are done if we can express (0, 1)T as a linear combination of the two
eigenvectors. To do this, we solve for α and β:

(

−1 .8
1 1

)(

α
β

)

=

(

0
1

)

,

which can be solved many ways for (α, β) = (4/9, 5/9). Therefore we have

C5

(

α

(

−1
1

)

+ β

(

.8
1

))

= .15α

(

−1
1

)

+ 15β

(

.8
1

)

= .00001
4

9

(

−1
1

)

+
5

9

(

.8
1

)

= .0000044444...

(

−1
1

)

+ .55555...

(

.8
1

)

=

(

.44444

.55556

)

exactly.
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