Fin 500J Solutions to Homework 1
Yajun Wang

Olin Business School

Problem 1. For
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(1)(A+ ATYB  (2) Determinant of C
and verify your answers using Matlab.
Solution :
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=2x3+5x(-3)=-9.

Problem 2. Invert the coefficient matrix to solve the following systems of equations

and verify your answers using Matlab:
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Solution : The linear system can be written as
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using Gaussian Elimination to find the inverse of the coefficient matrix,
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2:151 + X9 = 4, 61’1 + 21’2 -+ 61’3 = 20, — 42151 — 31’2 + 91’3 =3.

therefore,
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Solution : The linear system can be written as
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therefore,

To | = 13 -3 2 20 | = -2
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Solution : (1) A; is positive definite because the first order leading principal minor

is 5, which is positive, the second order leading principal minor is

3
2

2
=16>0
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and the third order leading principal minor is

2 4
1 -1

det(Ay) = 5x (—=1)" x +2x (=1)*2 x +1x (=13

=5XxT7—-2x5—-6=19>0.

(2) A, is indefinite because the first order leading principal minor is 1, which is

positive, the second order leading principal minor is

1 2
2 4

but the third order leading principal minor is
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det(As) =1 x (—=1)1! x
(A2) (=1) 0 6

+2 x (=1)M2 x

=24-25-2x12=-25<0.



Problem 4. Let
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Proof : (1) Firstly compute
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by definition of the partial derivative matrix for vector functions, we have
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(2) It is easy to see that
Ty = :)3% + $§ +x

Therefore, by the definition, we have
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